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Coenzyme A (CoA, la) is involved in a wide variety of met­
abolic functions, including glycolysis, fatty acid ^-oxidation, and 
biosynthetic pathways utilizing acetyl-CoA.1 It has been esti­
mated that about 4% of the known enzymes require CoA or a CoA 
ester as substrate.2 These include enzymes of pharmaceutical 
importance such as HMG-CoA reductase, which catalyzes the 
first committed step in cholesterol biosynthesis and is the prime 
target for cholesterol-lowering drugs.3 

The study of this important class of enzymes has in a few cases 
been facilitated by CoA or CoA ester analogs, especially analogs 
which possess the binding properties of CoA but the altered re­
activity of the thiol or thioester.4 However, while CoA dithio-
esters5 and dethio CoA6 have been prepared directly from CoA, 
the preparation of most CoA analogs currently depends on a quite 
difficult chemical assembly of the CoA moiety.4'7 We envisioned 
that the enzymes of CoA biosynthesis could provide a more 
convenient route to CoA analogs and report here a novel combined 
chemical and enzymatic approach to this class of compounds. 

CoA biosynthesis has been studied in both mammalian and 
microbial species, and the final two steps are shown in Scheme 
I.8"10 As the coupling of the adenylate and phosphopantetheine 
moieties and regiospecific phosphorylation of the 3'-phosphate 
are the two primary challenges in the chemical synthesis of CoA 
and its analogs, the enzymes catalyzing these last two steps in CoA 
biosynthesis have been previously employed synthetically.11"13 

A potential obstacle in the use of enzymes as synthetic catalysts 
is the limitation of substrate specificity. Such limitations would 
likely become severe in the simple enzymatic conversion of various 
pantetheine phosphate analogs to the corresponding CoA analogs. 
For this reason, a more flexible approach to this problem was 
undertaken involving enzymatic synthesis of an easily function-
alized thioester analog of CoA (lb) from the pantetheine phos-
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phate analog 2b. It was expected that 2b, differing from the 
natural substrate only by replacement of an amide bond by a 
thioester, should serve as an efficient substrate for the enzymes 
of CoA biosynthesis. Aminolysis of the thioester bond of com­
pound lb with an appropriate amine would form a CoA ester 
analog such as the dethio (carba) analog of acetyl CoA (aceto-
nyldethio CoA, 3), as shown in Scheme II. By aminolysis with 
a variety of amines, lb could serve as a versatile synthon for an 
unlimited number of CoA and CoA ester analogs. 

For enzymatic preparation of CoA analog lb, the phospho­
pantetheine analog 2b was prepared chemically as shown in 
Scheme III. Pantothenic acid (4) was first converted to the 
acylimidazole with concurrent trifluoroacetylation of the hydroxyl 
groups. Reaction of the acylimidazole with thiophenol followed 
by selective hydrolysis of the trifluoroacetate esters gave compound 
5b. Phosphorylation was accomplished by conversion to the di­
methyl phosphate ester 6a followed by removal of the methyl 
groups by procedures reported for the deprotection of dimethyl 
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phosphonates.14 Thiol exchange with ethanedithiol in an aqueous 
tetrahydrofuran solution resulted in formation of compound 2b. 

Brevibacterium ammoniagenes was chosen as the enzyme 
source. While whole cells have been used previously in CoA 
synthesis," it was expected that for the nucleophile-sensitive 
thioester analog a partially purified enzyme preparation would 
be necessary. Brevibacterium ammoniagenes was grown following 
a literature procedure." The two enzymes were initially separated 
by ion exchange chromatography on DEAE Sepharose.15 De-
phospho-CoA kinase was further purified by dye ligand chro­
matography on red A-argarose.16 The enzymes were coimmo-
bilized in polyacrylamide gel.17 

In preparative enzyme reactions, substrate 2b was not isolated 
but was generated from 6c and ethanedithiol just prior to use and 
analyzed via HPLC. Reactions were performed by combining 
compound 2b (0.42 mmol, 20 mM final concentration), ethane­
dithiol (10 nL), magnesium chloride (0.5 mL, 0.5 M), ATP (10 
mL, 0.1 M in 0.1 M HEPES buffer, pH adjusted to ~6 with 
LiOH), and inorganic pyrophosphatase (~5 units) in HEPES 
buffer (11 mL, 0.1 M, pH 7.5) followed by addition of the im­
mobilized enzymes E] and E2 (approximately 0.2 unit of each 
enzyme). The reaction mixture was stirred at room temperature 
under nitrogen to minimize oxidation of the thiols. Reaction 
progress was monitored by HPLC and was judged complete when 
ATP consumption stopped (2 days). No difference in rates was 
observed in the enzymatic conversion of 2b to lb versus the rate 
determinations with the natural substrate. The crude enzyme 
product was reacted with the amine nucleophile 7 at alkaline pH. 
Adsorption/desorption on acidified charcoal and ECTEOLA 
cellulose chromatography18 followed by C-8 reversed-phase 
chromatography provided compound 3 (45 mg, 12% from 6a). 
The product 3 was characterized by 1H, 31P, and 13C NMR 
spectroscopy, elemental analysis, and high-resolution mass 
spectrometry.'9 This methodology is now being employed in the 
synthesis of a range of novel CoA analogs for a variety of ap­
plications. 

In addition to providing convenient access to an unlimited range 
of CoA analogs, the methodology described here represents a novel 
concept in utilizing enzymes as catalysts in organic synthesis. This 
enzymatic synthesis of an easily derivatized analog, followed by 
introduction of the functionality of interest in a final chemical 
step, minimizes substrate specificity limitations.20 We expect 
that this concept may find similar applications in other classes 
of compounds. 
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The activation of C-H bonds by pyrazolyl borate complexes 
of rhodium and iridium is receiving increased attention.1-2 We 
recently demonstrated3 that the complex Tp*Ir(H)(CH= 
CH2)(C2H4) (2) (Tp* = HB(3,5-Me2-pz)j) undergoes intramo­
lecular coupling of the vinyl and ethylene ligands with formation 
of the allylic complex Tp*Ir(H)(»;3-CH2CHCHMe) (3). Now 
we show that the hydride-vinyl 2 is also capable of regioselectively 
activating the two C-H bonds of the O-bearing methylene groups 
of cyclic ethers (e.g., tetrahydrofuran (THF)) with formation of 
Fischer-type carbene derivatives, which also contain an Ir-H and 
an Ir-butyl functionality. 

Heating a THF solution of the bis(ethylene) complex 1 (60 0C, 
8 h) quantitatively leads to a mixture of two complexes in a 1:1 
ratio. One of them is the already mentioned allyl 3, while for the 
other, 4, analytical and spectroscopic studies (including 2D 1H-1H 
and 1H-13C NMR experiments) suggest the formulation shown 
in Scheme I. This has been confirmed by X-ray studies,4 whose 
results are shown in Figure 1. 

Formation of 4 constitutes an unprecedented double dehydro-
genation of one of the a-methylene groups of tetrahydrofuran.5 
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